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Abstract

An asymptotic analysis of a mechanistic Equal Velocity Unequal Temperature (EVUT) model has been
developed to predict critical flashing flows. The obtained results have been compared with those coming
from the Homogeneous Equilibrium Model (HEM) and some experimental data extracted from Marviken
test series. In spite of its simplicity, the developed non-equilibrium model not only gives a good approach to
experimental measures but also explains the complex behavior shown by critical blowdowns of pressurized
vessels. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Determination of mass flow rates in critical flows of vapor—liquid mixtures is a problem of great
Importance in many engineering processes (analysis and design of nuclear power plants, handling
of liquefied gases, analysis of cooling systems, etc.). Many significant aspects can influence critical
two-phase flows: geometry, flow regime, fluid history, thermal disequilibrium, etc., and, despite
the large amount of work done in the past, the problem remains open. A lot of empirical and
analytical correlations have been developed to determine critical velocities in particular cases (see,
f.i., the reviews of Saha, 1978; Wallis, 1980; Elias and Lellouche, 1994), but all of them fail to give
either accurate results or physical justification in general situations.

An interesting and very common example of critical two-phase flow arises when a pressurized
vessel containing subcooled liquid at high temperature is suddenly opened (through a nozzle, a
pipe or a crack) to the ambient conditions. After a few milliseconds, the liquid discharges quasi-
steadily through the exit channel, where flashing arises, presenting a critical behavior. The
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mentioned review papers and some specific works on flashing flows (Ardron, 1978; Dobran, 1987,
Sami and Doung, 1989; Bilicki and Kestin, 1990; Deligiannis and Cleaver, 1990; Elias and
Chambré, 1984, 1993) point out the importance of considering thermal disequilibrium and slip
between phases to predict critical mass flow rates in this particular case.

When void fractions are small, interphase slip can be neglected. In such a case, the fluid can be
considered as a bubbly mixture where the vapor bubbles are dragged along by the liquid.
Moreover, the thermal disequilibrium between phases only becomes significant when the bubble
nucleation is incipient and, as a result, the void fraction is very small. In fact, the Homogeneous
Equilibrium Model (HEM — no slip, no thermal disequilibrium) is a good approximation in many
practical situations. Only discharges through very short nozzles and those presenting high inlet
subcoolings are not well modeled by such an approximate model.

In the present work, the significance of thermal disequilibrium is analyzed in dispersed bubbly
flows under critical conditions. To do that, a mechanistic Equal Velocity Unequal Temperature
(EVUT) model is chosen. When the liquid pressure is below the corresponding saturation pres-
sure, the fluid is modeled as an homogeneous mixture of metastable liquid and spherical bubbles
of saturated vapor. The metastability degree of the mixture, which is sized by the amount that
pressure is below the saturation value, determines the rate of bubble nucleation. As slip between
phases is not considered, the scope of this study is restricted to the range of small void fractions,
o < 0.3. Consequently, from a practical point of view, this analysis will be mainly applicable to
flashing flows in short non-divergent ducts.

Results corresponding to critical blowdowns of pressurized vessels are compared with HEM
predictions and some available experimental data. For subcooled blowdowns, the predicted mass
flow rates, which are greater than those given by the equilibrium model, fit well with experimental
results. However, for saturated blowdowns, the presence of bubble nuclei entering the exit duct
must be considered in order that EVUT model gives accurate predictions.

The paper is organized as follows. Section 2 states the basic equations which describe the flow
through a discharging nozzle. In Section 3, the results given by the HEM approach are reviewed
as a simplification of the EVUT model. Section 4 summarizes the main results arising from the
asymptotic analysis of the non-equilibrium model. Comparison between analytical results and
available experimental data is shown in Section 5. Finally, the principal concluding remarks are
summarized in Section 6.

2. Basic equations (EVUT model)

Basically, the EVUT model analyzed here consists of the three mixture conservation equa-
tions (mass, momentum and energy), a vapor generation law and the corresponding state
equations. The main assumptions used in the model are: the flow is one-dimensional, steady and
adiabatic, friction losses and gravitational effects are neglected and the fluid is either a sub-
cooled liquid or an homogeneous mixture of metastable liquid and spherical bubbles of satu-
rated vapor.

Using these assumptions, the conservation laws can be stated as (see, f.i., Bouré, 1978)

pid = ¢, (1)
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dv dpP
_dv dP )
’Ovdz+dz 0, (2)
_ P 3
ht5 = ha (3)

Quantities p, 7, P and h are, respectively, density, axial velocity, pressure and specific enthalpy of
the mixture. The constant ¢ is the mass flow rate through the nozzle. At each section, 4 is the
cross-sectional area, which is assumed to be a non-increasing function of z (the distance from the
nozzle inlet) in the remainder of this paper. Subscript “d”’ denotes magnitudes corresponding to
the inlet section.

To deduce (3), stagnation conditions and zero velocity have been considered at the inlet. Such
an assumption is physically consistent with many practical situations, where pressurized tanks or
vessels are discharged to ambient conditions through small nozzles or cracks.

The following approximate expressions will be considered for density and specific enthalpy of
each phase:

o . P
L = pé(l +ks(P_Psd) —k[g(T— Td)), PG :T (4)

hL:hLd+Cg(T—Td)+P ﬁ Sd, hG:hLd +L+va(fs(p)—fd) (5)
¢

The use of the above relationships is justified by many critical blowdown experiments, where
the exit pressure is by about 20% under the inlet saturation pressure. Such a percentage
corresponds to saturation temperature variations 5% below the inlet temperature. The
parameters appearing in these expressions are the following thermodynamic magnitudes
(calculated at temperature 7y under saturated conditions): p,, liquid density; k, isothermal
liquid compressibility; ks, volumetric expansion coefficient of the liquid; Py, saturated
pressure; A4, liquid specific enthalpy; C, and Cj,, liquid and gas constant pressure specific
heat capacities; L, latent heat of vaporization. Furthermore, the variable T is the liquid
temperature and the function T;(P) is the saturation temperature at pressure P. For small
temperature oscillations, such a function and its inverse, P(T), can be approximated making
use of the Clausius—-Clapeyron approximation near the saturation point corresponding to the
inlet temperature

dT; T _ _

P M= (6)

Except for the second relation of (4), the approximations used in state equations (4) and (5) are
linearizations around the saturation point (Ty,Pyg). In fact, as saturation temperature varies
slightly along the channel, vapor density also behaves almost linearly with pressure. Furthermore,
when temperatures are high and the use of the ideal gas law introduces significant errors, the
results are improved to a great extent after using the isothermal law

P
= (7)

Wb\|£d\
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instead of the second expression of (4) (p, is the saturated vapor density at T,). For instance, for
the inlet conditions present in Marviken tests (analyzed in Section 5), the above expression pre-
dicts saturated vapor densities with relative errors of 2% for temperatures 30 °C below the inlet
temperature.

To close the system (1)—(3) a constitutive law of vapor generation, relating the rate of interfacial
mass transfer with other variables involved in the problem, is needed. To obtain it, both a rate of
bubble generation and a bubble growth law will be considered. Nucleation Theory (Blander and
Katz, 1975; Deligiannis and Cleaver, 1990) provides the rate of bubble production

3
J = NBexp —La_lpz , (8)
kg TAP

where N is the number of molecules per unit volume in the liquid phase, kg is the Boltzmann
constant, ¢ is the surface tension at the gas—liquid interface and the parameter B = /2 /mm is the
kinetic factor (m is the molecular weight). The magnitude AP = P,(T) — P, termed the pressure
undershoot, sizes the supersaturation degree of the liquid phase. Alternatively, if such a quantity
is negative, it measures the liquid phase subcooling. Expression (8) is valid for positive values of
AP, otherwise the nuclei production is null.

The exponential factor y is introduced to take into account heterogencous nucleation
phenomena (wall cavities, liquid impurities, bubble clustering, etc.). Empirical correlations
relating  with other relevant depressurization parameters (as liquid temperature and rate of
depressurization) are proposed by some authors, see, f.i., Deligiannis and Cleaver (1992,
1993), Alamgir and Lienhard (1981), Elias and Chambré (1993) and Bartdk (1990). However,
in this work, the inhomogeneity factor iy will be considered as an empirically adjusted
constant parameter. This assumption limits the scope of the obtained results to these cases
where fluid conditions and flow characteristics are similar to those present in the data used
to adjust .

On the other hand, the bubble growth is assumed to be thermally controlled, i.e., the interfacial
heat transfer is totally spent on the production of the new phase (see, f.i., Nigmatulin, 1991, Vol.
1, Section 2.9)

d 47'[ 3 . 7kgﬁ
@ <?r pG> = Nunr 7 9)

Quantities 7 and AT = T — T,(P) are, respectively, the bubble radius and the liquid supersatu-
ration degree. Last magnitude is related to the mixture pressure undershoot through
T = 7_;(}3—1—@). Other parameters are: k,, the liquid thermal conductivity and Nu, a Nusselt
number based in the bubble diameter which accounts for the size of the interfacial thermal
boundary layer. The use of the above expression implies that the influence of bubble growth
becomes significant when bubbles have left behind their initial growth stages controlled by surface
tension and inertia forces.

A suitable expression for Nu, valid in a wide range of moderate and weak superheats, is given
by

12J
Nu:2—|-(2]a)l/3+Ta,



E. Valero, LE. Parra | International Journal of Multiphase Flow 28 (2002) 21-50 25

where Ja = (C,p,AT)/(p,L) is the Jacobs number. However, moderate and high mixture super-
heats are expected to arise only in thin layers after the nucleation points. Thus, in order not to
complicate calculations unnecessarily, the Nusselt number Nu =2, corresponding to weak
superheats (Ja < 1), will be used in the following.

After using expressions (8) and (9), the following void fraction evolution law is obtained (see
Appendix A):

__ 3/2 _ o
_AnNB(2k)? [F 7 AT(z) dz (1 — a(z0))4(z0)F (AP(zp))
OC(Z) = T 3. —— — dZ(), (10)
2 \ o po(E0)5(20) A(2)0(2)pg(2)
where the function F(AP) is defined as
o _ _léna’y APD
F(AP) = exp ( 3kBTEZ>’ AP >0,
0, AP <0.

The symbol z, terms the nearest position to the pipe inlet where the pressure undershoot, AP,
becomes positive. Upstream from z,, the void fraction is null and the fluid is a subcooled liquid. In
particular, z, = 0 for AP4 = 0.

3. The Homogeneous Equilibrium Model (HEM)

When the constitutive relation (10) is substituted by the equilibrium condition
T=T,(P) or AP=0,

the HEM results (the fluid is either a subcooled liquid, « = 0 and AP < 0, or an equilibrium two-
phase mixture, o > 0 and AP = 0). In this model, density can be expressed as a function of
pressure and specific enthalpy. For equilibrium mixtures, the function takes the form
. i (h —
p= (Pl = —LePrlle i)
pchc — pLh + (pL — Po)h

When the fluid is a subcooled liquid, last equation must be replaced by the subcooled relation
p = p.(P,h) obtained after eliminating 7 between the leading expressions of (4) and (5). Using
such a function and Eq. (1) a differential equation describing the pressure evolution along the
nozzle is obtained

o) 5 20 . .
1 - _if’_z %Zdi’i’ where%: 6_/1 +i 6_;_) . (11)
(pUcA) dz pA Ug oP i P Oh 5
Enthalpy and pressure are related through the algebraic expressions (1) and (3). The positive
quantity o, is the local sound speed, which is a discontinuous function along the liquid saturation
boundary, & = hy (P, T,(P)). In particular, for temperatures less enough than the critical tem-
perature the sound speed falls from the value obtained for monophasic liquids (72 ~ 1/pk;) to the

low value corresponding to incipient saturated mixtures:
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_ Pde
Ved = — = F7——=-
PR Ty CiTy

To obtain last approximate expression, vapor-liquid density ratio and liquid compressibility have
been neglected.

The classical HEM critical condition results when the leading coefficient of Eq. (11) is cancelled
out

(12)

U=

i:ac(ﬁﬁ). (13)
Ap

At those points where last condition is fulfilled, the pressure profiles given by Eq. (11) present a
turning point with vertical tangent (see Fig. 1(b)). However, such pressure profiles also present an
abrupt change of tangent when saturation pressure is reached. Therefore, when the solutions of
(11) attain the saturation boundary with velocities greater than the sound velocity for saturated
mixtures (¢/Ap > eq), the z derivative of P changes of sign and pressure profiles present dis-
continuous turning points at the saturation pressure (see Fig. 1(a)). In such a case, the critical
condition takes the form (see Collins, 1978)

p:Psdy (14>

which arises when the fluid velocity at the critical point is greater than the mixture sound speed
at the saturation limit, o4. Owing to the small values of the liquid compressibility (p ~ p,),
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Fig. 1. HEM pressure profiles along a nozzle with exit area 4, = 1 m? for (a) —2AP, > p.0%, and (b) —2AP; < Pl
(solid lines represent physically admissible solutions).
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Eq. (2) can be easily integrated and the applicability range of condition (14) can be analytically
stated as

(15)

—2AP; — p,v2y = 0.
If the above quantity is negative, the applicable critical condition is (13).

4. Asymptotic analysis of the EVUT model
To analyze the non-equilibrium model proposed in Section 2, the following non-dimensional

variables are chosen:
A= ijdy =7z

p:p/pév U:ﬁ/ﬁcda h = (E_}_ZLd)/Egm
AP T — Ty)Ry ATR,,
_ T = TR AT ==,

, AP = ——= = 2 )
PiVcq Ued Ued

_P-Py
i3y
Subscript “a” refers to exit section, thus z, and 4, are, respectively, the nozzle length and the

nozzle exit cross-sectional area.
The non-dimensional system resulting from Egs. (1)—(6) and (10) is
pvd = ¢, (16)
dv dP
D W | 17
pe dy dy 7 (17)
02
04 + P
d + (19)

—1_ 2p_ 2
p=1-a)(l+cP CﬁT)+8a9d+sTs(P)’

ph = (1 —a)(1 + P — céT)(,uéT +P)+ ocg(ed Zjﬁiz(/;)n(m) , (20)

d7y _ (0a +¢T)* _

&= rry O=0 2
(22)

" (= )P APOY)

o [ [ ATedn \"
) C/w </VO U(J70)PG()70)1/3) AW)(»)rc(y)

exp (—4), AP >0, 0q + P
F(AP):{OP( AP2) AP<O and pG:gied—igT(P).
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The non-dimensional parameters appearing in the previous set of equations are

b Py —P P
= —(l) 1’ APd = M’ cz = kSﬁlﬁgd? C%; = kﬁﬁid/Rw7 &= Sd* ;
p[Ucha PeVcq PeRwTd
Py C Cpy L 4nNB [ 2ke [ 2\
Og=—, Ww=72"H W=7 =75, C= = —
Py R, Ry, Usy 3 IRwp, Ded
16may

ad=—=—F—7-
3kpTyp; 02,

The system (16)—(22) must be completed with the boundary conditions
P(0) = —APy, P(1) =P, (23)

which serve, respectively: as initial condition in the integration of the differential equation (17) and
as physical condition in the determination of the mass flow rate ¢.

To deduce Eq. (18), it has been considered that pure liquid enters the nozzle (og = 0). The
quantity —AP,, which is usually non-negative, is the liquid subcooling degree at the nozzle inlet.
Sometimes, during the rapid depressurization of a vessel, the vessel liquid may reach super-
heated states (AP; > 0). However, in such a case AP; used to be negligible compared with the
undershoots arising inside of the pipe, because of the relatively slow vessel depressurization
rates.

Using Egs. (16) and (18)—(21) and having into account that T = T;(P + AP), the magnitudes p, v
and P can be obtained as functions of « and AP. Thus a differential relation between o and AP
comes from Eq. (17). Integrating such a relation together with the vapor generation law (29) and
boundary conditions (23) solves the problem.

An approximate model of the problem (16)—(23) will be developed in the sequel. Such an as-
ymptotic model corresponds to the limit /! < ¢ < 1, which is valid when inlet temperatures are
under the 90% of the substance critical temperature. Furthermore, the smallness of the non-di-
mensional liquid coefficients of isothermal compressibility and volumetric expansion, ¢* and cé,
and the exponentially large value of the bubble production coefficient, C, will be also taken into
account. Under these assumptions, the following approximate equations come from the system
(16)—(23):

_ b _elrw
03 P
Ts(P)—Szllog<1+0d>a (25)
04l0g 1+P+ +w l—i-£ =0, (26)
04 04
2 2 1
¢ dw+£_q5(l+w)A’ (27)

A2 dy "dy A3
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3/2
3 Y Y A(_o)l 1+ (AP(_O)/(G +P(_o))) dy,
(1780 < i [ AL e )
¢ TR L e (14 (PG /00)) (1 ()
A(w)

Tw(yo)F(AP(yO)) dyo (28)
P(0) = —APy, (29)
P(1) = P,. (30)

In the above system, the volumetric ratio, w = /(1 — «), is introduced in place of the void
fraction, «. Both magnitudes, volumetric ratio and void fraction, must be taken identically zero
until the pressure undershoot becomes positive at position y,, because the integrand in the second
member of Eq. (28) is null for non-positive values of AP.

Moreover, to obtain Eq. (26), the identity /> = u,04 has been taken into account. Such an
equality follows from the use of the approximate expression (12) of the characteristic velocity, 0.4,
which was obtained neglecting terms up to order ¢, ¢ and clzj.

When the ideal gas law in (4) is substituted by the linear approximation (7), the same as-
ymptotic model (Egs. (24)—(30)) follows. However, the significant parameters of the problem must
be calculated making use of the quantity P/ ﬁgT 4 instead of the gas constant Ry,. For instance, the
vapor-liquid density ratio, the coefficient C and the characteristic mixture sound speed now read,
respectively,

_ _ =\ 32 5/2 _
Py 4TNB [ 2kipg T4 Z _ Pel

&E=—, C= —— _— y Vg = —F——=. (31)
Dy 3 [Pyp, Ued eV Cely

The differential equation
g = iz — (1 + 5 — @ 1 + P+ Ap d_W
dy - A? Hd A20d Hd dy

»*4’ P+ AP\ w
VE I+ (1+ o 0 (1+w),

(32)

which describes the pressure undershoot evolution, follows from relations (26) and (27). The
integrodifferential system (28) and (32), Eq. (26) and the boundary condition (29) constitute an
initial-value problem, which can be solved for each fixed value of the non-dimensional mass flux,
o.
The mass flux corresponding to a particular discharge problem will be determined using the exit
boundary condition (30). Here, in contrast to the HEM model, where critical phenomena can
arise, such an exit condition is always applicable. However, as it will be seen later, if P, is below a
critical bound, P,, the pressure profile evolves steeply under P, in a thin layer near the exit and the
corresponding mass flux coincides practically with that obtained for P, = P,.. Therefore, from a
practical point of view, though analytically condition (30) ever applies, such a condition deter-
mines the discharge mass flux only when P, ranges between P, and —APy. For exit pressures below



30 E. Valero, LE. Parra | International Journal of Multiphase Flow 28 (2002) 21-50

the critical value, as it similarly happens in the HEM model, the mass flux apparently does not
depend on the exit pressure.
To see that, the integrodifferential system (28) and (32) is analyzed in the following paragraphs.
In all sections upstream from A4, = A(y,), the pressure undershoot is negative and the volu-
metric ratio is null. Thus, Eq. (32) reduces to
dAp ¢4
F TR for y <y, (33)
which implies (AP(0) = AFy)

AP = APy + %1 for y <y,. (34)
Therefore, provided that inlet stagnation conditions are subcooled (AP < 0), the point y, (where
pressure undershoot becomes null) is determined by the condition

e

APy 5= 0. (35)

For ¢* < —2AP; Eq. (35) has no solutions inside of a convergent nozzle, because A is greater than

unity at all sections. Consequently, everywhere in the nozzle the conditions are subcooled and the
volumetric ratio is null. Thus, as Eq. (26) implies

P=—AP (36)

for w = 0, non-dimensional mass fluxes less than —2AP; correspond to exit pressures greater than
the inlet saturated pressure (P, > 0).

On the other hand, if ¢* > —2AP,, there exists inside of the nozzle a section fulfilling Eq.
(35) 4, =1, 0<y,<1). The case of y,=0 corresponds to inlet saturated conditions
(APy = 0).

To understand the phenomena arising downstream from the saturation point y,, the expo-
nential character of the volumetric ratio evolution law (28) must be considered. Thus, although
the integrand of such an integral expression is non-null for positive pressure undershoots, it
remains exponentially small along a metastable region behind y,. In such a region, not only the
volumetric ratio can be neglected but subcooled expressions (34) and (36) can be also applied.
However, the situation evolves steeply at point y, (the so-called point of flashing), defined as
the position where the volumetric ratio derivative (dw/dy) becomes as important as the other
terms in Eq. (32). Just after section 4, = A(y,), significant changes arise inside a thin nucle-
ation layer.

To analyze the fluid evolution in such a nucleation layer, new stretched variables

AP — AP, V= Vnm
= —_— S =
B n
are introduced in Egs. (32) and (28)

b
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Bdb  (¢*/42) + (AP./0s) — 1 dw ¢4,
nds n ds Afn ’

o ((M4n —03log (1 — (AP, /9d)> Co—a/AP2 — x)¥2e2aB/ARN)
—< ¢> ( (1= (AP /00) f. "

The above approximate expressions have been obtained assuming that the nucleation layer
characteristic magnitudes are small enough, n < 1 and w~ f < AP,, = AP(y,). Such an as-
sumption will be verified later.

At the point of flashing y,,, according to its definition, the orders of all terms in Eq. (37) must be
equal. Thus, the identities

() () oS o

are fulfilled by suitable values of n, f and AP,. With the above assumptions Eq. (37) will read

——11— / )2 QBRI

(37)

Then, in order that volumetric ratio and pressure undershoot present fluctuations of the same
order, the parameter f§ should be chosen to allow variations of order unity in the integral member
of last equation. An adequate value to cover this requirement is

p=t (39)

In relations (38) and (39), the representative values of pressure undershoot and cross-sectional
area (AP, A,,) are taken at section y,,, where, in a first approximation, subcooled expressions (34)
and (36) are still valid. Then, these magnitudes fulfill the following relation:
¢2
AP, = APy +—=—P(Vn)- 40
tF g = ~FOm) (40)
Eqgs. (38)—(40) constitute a four-order non-linear system of equations, whose solutions #, f3, y,, and
AP, define adequate stretched variables, b and s, to study the flow inside the nucleation layer.
Eliminating #, B, ¢/4,, from Egs. (38)—(40), the non-linear relation

—APSlog (1 = (AP /0)\ ™ _ar
( 2ae31(1 — (AP, /0y)) > Ceritn=t “

|(2+(1/04))AP, — 2APy — 1]| 4
(2AP,, — 2AP;)"* A;n

results. Last equation relates the unknown quantity AP, to characteristic parameters of the dis-
charge problem. All these parameters are known but the ratio between the cross-sectional area
and its derivative at point y,,. Such a position depends on the a priori unknown parameter ¢ (see
Eq. (40)). However, owing to the exponential character of relation (41), the values of AP, fulfilling
such a relation mainly depend on the non-dimensional parameter ¢ and hardly vary with other
involved data. In fact, it can be easily proven that variations of order unity in 4,,/4! imply errors
of order f in the evaluation of AP,. Then, to simplify the calculations, the solution of (41)
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corresponding to representative values of ¢ and 4,,/4/ can be used in practice. When a more
exact value of ¢ is known, further adjustment of AP, is unnecessary.

Eq. (41) is solvable in the region: 0 < AP, <04 for any fixed value of 4,,/4/. The minimal
solution of Eq. (41) (for which the symbol AP, will be reserved in the sequel) corresponds to the
minimum pressure undershoot which makes the nucleation process significant in the mixture
evolution. That is, AP, and the corresponding value of y, characterize the onset of flashing.
Except for the inhomogeneity factor , the parameter « is directly related to the vessel temper-
ature, Ty. Consequently, in discharge problems the onset of flashing is basically determined by
vessel temperatures and substance properties, whereas such a flashing threshold hardly depends
on other relevant data as inlet subcooling or nozzle geometry.

Using the stretched variables b and s, defined by the resulting value of AP, and the corre-
sponding values of 8,7 and y,, Eq. (32) reduces to

b(s) =s+ / S (s — x)*e"™ dx. (42)

[o¢]

Last equation describes the pressure undershoot profile in the nucleation layer and its solution
matches at s — —oo with the metastable solution (34) at y = y,,. The plus and minus signs in Eq.
(42) correspond respectively to positive and negative values of the coefficient multiplying the
volumetric ratio derivative in Eq. (32) evaluated at point y,,

¢ | AP,
A2 04

—1:—2APd+<2+9i>APm—1. (43)
d

In the previous analysis, the smallness of quantities # and /AP, is an essential hypothesis. To
check the validity of that assumption use expression (39), which is equivalent to the equality
between 2f3/AP,, and AP2/a. This last quantity can be considered very small because the bubble
production coefficient, C, takes exponentially high values (see relation (41)). Provided that 4/ is of
order unity, (38) implies that § are of the same order than #. Thus f and # are much smaller than
AP, that usually is at most of order unity.

The two possible solutions of Eq. (42), corresponding to both sign possibilities, are drastically
different (see Fig. 2). What of them is applicable determines the flow regime downstream from the
nucleation layer. Thus, to solve the boundary value problem defined by Eqgs. (28) and (32) and
conditions (29) and (30), both possible signs of quantity (43) must be considered.

Case 1. Quantity (43) is positive. In such a case, at s — oo the nucleation layer solution (plus
sign in Eq. (42)) presents exponential growth (see Fig. 2) and matches with a runaway solution of
the system (28) and (32). In this runaway solution, volumetric ratio and pressure undershoot grow
exponentially in short lengths (see Appendix B) and the cross-sectional area can be considered
constant (4 ~ 4,,). Consequently, expressions relating volumetric ratio with both pressure and
pressure undershoot readily follow from Egs. (26) and (27):

d)z
P:—APm—ITrZHW,
B ¢ o*w? AP\ w
AP_APm+A§nW+0d exp Af,ﬁﬁ 1 0, )0, 1
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Fig. 2. Solutions of integral equation (42).

To confirm the validity of the asymptotic method previously described, a solution obtained by
direct numerical integration of the system (26)—(29) is represented in Fig. 3(a). Pressure and
pressure undershoot evolves linearly until a certain pressure undershoot is reached, after which
pressure, pressure undershoot and volumetric ratio evolve exponentially in a very short length
(Here AP, = 0.565... and, as a result, quantity (43) is positive).

Therefore, if the exterior pressure is higher or equal than the minimum attainable pressure in
the metastable region (P, = —AP,), the exit boundary condition (30) can be imposed in Eq. (34)
(see also Eq. (36)) to determine the nozzle mass flux

¢* = —2AP; — 2P,. (44)
Otherwise (P, < —AP,) the ambient pressure will be reached in the runaway solution for the
volumetric ratio

P, + AP,

Wy = ———" + 5 A,Zn.

¢

As has been aforementioned, the nucleation layer characteristic length, #, is much smaller than
unity. Moreover, in Appendix B is proven that the runaway solution attains the volumetric ratio
w, inside a length of order 5. Therefore, provided that quantity (43) is positive and P, < —AP,),
the boundary of the metastable region is approximately at the exit (3, ~ 1 and 4,, ~ 1) and, from
a practical point of view, the nozzle mass flux becomes independent of the exterior pressure (see
relation (40))

¢’ ~ ¢ = —2AP; + 2AP,. (45)

Such a practical expression of the critical mass flow rate, ¢, corresponds to the boundary con-
dition
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Fig. 3. Numerical solutions of the system (26)—(29) for AP; =0, qbz =1.5, 04 =5, log <4,5/+E1w> = 70 and, respec-
tively, a = 20 in (a) and @ = 0.2 in (b).
P(1) = —AP,, (46)

which is equivalent to the dimensional expression

P(Za) =Py — Ezw

The above condition corrects the HEM critical condition (14), corresponding to high inlet sub-
coolings, when metastability effects are taken into account.
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Case 2. When the onset of flashing, —AP,,, and the inlet subcooling, —AP;, are small enough to
imply negative values of quantity (43), the nucleation layer is described by Eq. (42) with negative
integral term. The corresponding solution passes through a maximum and decreases when s tends
to infinity (see Fig. 2).

After such a nucleation layer, the integral member of Eq. (28) can be asymptotically evaluated
(see, f.i., Bender and Orszag, 1978 or Murray, 1984) and, as a result, the volumetric ratio can be
approximated by

0’ 32 Y < Vm;,
w(y) = g / A()1og (1+ (APGY)/ (04 + P(1)))
EHEOD D (1w (1+ (PO/00)

dw | 5, y>um

(47)

The parameter ¢ depends on the evolution of the pressure undershoot in the nucleation layer,
obtained numerically from Eq. (42). To be exact

¢4, (2a)' (1 — (APw /64))*" b
T ADY2 2 42 _ _ 3/2/ dr
ASAP|(¢°/42) + (AP, /04) — 1]|log (1 — (AP, /04))]

q

and

/ ‘e”(x)dleimi(s)zl.BS...,

. sooo 32

where b is the solution of Eq. (42) with negative integral term. Physically, the non-dimensional
quantity ¢ sizes the number of nuclei which are produced in the nucleation layer and govern the
phase interchange downstream.

The differential system

2/3 _ 2 41 2/3 2/3 A
dw?® 1 2 [2¢A(1+w)w g Alog(l—i— P >]’ (48)
dy 14 (P/04) — (¢*w/A4204) 343 1+w 04 + P
dAP _ —1 [<1+£>¢2A’(1+w)_3w1/3<¢i_<1+£_¢2w>
dy 14 (P/0,) — (¢p*w/4204) 04 A3 2\ 42 04 A%04
P+ AP\ ¢34 AP
1 log ( 1 49
()t ®

describing the evolution of volumetric ratio and pressure undershoot for y > y,, is obtained from
relations (27), (32) and (47). Such a system must be completed with the algebraic Eq. (26) to relate
the magnitudes P, AP and w. The solution of (48) and (49) which corresponds to the initial
conditions

W( m) =0, AP(y, ):APWH (50)

matches with the nucleation layer solution at y,, and is valid downstream as long as the pressure
undershoot, AP, remains small enough.
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If AP goes beyond the value AP, at any point y; downstream from y,,, the system (48) and
(49) (or equivalently (47) and (32)) stops being valid and the primitive equations (28) and
(32) must be taken into account again. To be exact, the more adequate approximation of Eq.
(28)

3/2
v 4(w) log (14 (APGY)/(0a + P(0))
w(1+85) <o Rl )
() (1+ (PGy)/00)
32

el / /))Acyonog(l+<AP<yo>/<ed+P<yo>>>)dyo
PP S\ S ) (14 (PG /00)
Tragye " @ (51)

should be employed for y >y, instead of (47) ()/, can be any value greater than y, and less
than y;). Eq. (51) reduces to (47) in the interval y, <y <y, because the last term of (51) is
negligible. However, when AP approaches AP, at y = y;, the derivative of such an additional
term becomes important and the behavior of the first term in the second member of Eq. (32)
changes abruptly.

Physically, a secondary nucleation layer arises at section 4; = A(y;) and, as well as it
comes up at section A4,, two possible situations must be considered within the limits of
Case 2.

Case 2.1. If the coefficient multiplying the volumetric ratio derivative in Eq. (32) (calculated at

point y;)
¢’ P *w P + AP,
(A% 1+ 0a 4204 1+ 0, (52)

is positive, the last term of (51) becomes dominant inside of the new nucleation layer.
Therefore, just as it happened after y, when quantity (43) was positive (Case 1 above), both
volumetric ratio and pressure undershoot grow exponentially downstream from position y,
(see Appendix B). Magnitudes evolve in short lengths and the cross-sectional area can be
considered approximately constant. As a result, the following relation between pressure and
volumetric ratio is obtained from Eq. (27):

2 2

P+—Sw=P +-—=w. 53
A%W ! A%Wl ( )

Case 2.2. If quantity (52) were negative, after the second nucleation layer the pressure undershoot
would decrease and the volumetric ratio would follow the approximate law:
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3/2
. , i A log (1+ (APGY/Ga+ POY))
wy)=———"— 1/3 Yo
T+ PO\ I +W(y0))<1 i (P(yo)/ed)> :
3/2
., » A7) log (1 + (APG)/(0a + PG)))
Haree |, of o

(14w (1+ (P)/00)

The intensity of the secondary nucleation, ¢;, would be determined as the coefficient ¢, analyzing
the pressure undershoot evolution in the last nucleation event. The integrodifferential system (32)
and (54) would approximately describe the flow downstream from section y;, after which an
additional nucleation layer could arise when the pressure undershoot AP, were again reached. In
such a case, depending on whether the pressure undershoot was increasing after the new nucle-
ation point or not, the solution would either end abruptly as in cases 1 and 2.1 or continue as in
cases 2 and 2.2. Thus, the treatment of the problem might be extended indefinitely.

However, the situation described in Case 2.2 only arises under exceptional circumstances which
go beyond the limits of this work, f.i., the authors have observed a third nucleation layer at the
pipe exit in some flow regimes presenting weak primary nucleation (¢*/3AP,, ~ 1) upstream from
strongly convergent zones of the pipe (|4'| > 1). So, for the sake of brevity, in the following Case
2.2 will not be taken into account and quantity (52) will be considered positive when the pressure
undershoot attains the value AP, downstream from y,,. That assumption means that secondary
nucleation layers only can arise at the pipe exit (y; ~ 1,4, ~ 1), because pressure and volumetric
ratio evolve explosively after them. When the exterior pressure, P,, is less than P, the corre-
sponding volumetric ratio (see Eq. (53))

(P 1 — P a)A%
¢2
is reached in lengths of order #*/° < 1 (see Appendix B).
To illustrate the accuracy of the used asymptotic method, as it was done in Case 1 above, a
direct numerical solution of the system (26)—(29) has been obtained. In Fig. 3(b), such a solution is
compared with the matched asymptotic solutions of Egs. (33), (48) and (49). Here the flashing

threshold is AP,, = 0.057 ... (which corresponds to a negative value of (43)) and the corresponding
value of ¢ (see Eq. (47)) is 4270. Relative errors, which are of the order of

Wy = Wy +

-1
Co;
(e (Grrgimm))

are very small.

In the light of the obtained results, the following considerations can be done about the non-

dimensional mass flow rate, ¢, which appears as a parameter in the system (48) and (49):

e There exists a critical mass flow rate, ¢, such that the unique solution of the initial-value prob-
lem (48) and (50) presents the secondary nucleation layer and the matched runaway solution at
the nozzle exit (i.e., AP(1) = AP,,y1 = A; = 1). In the following the value P. will denote the
pressure attained at y; = 1 in such a critical solution.
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o If the ambient pressure P, is greater than the critical one P., the mass flow rate is subcritical
(¢ < ¢.) and corresponds to the solution of (48) and (50) fulfilling the exit condition (30).

e When the exterior pressure is under the critical value, ambient conditions are reached in the
runaway solution starting at y; ~ 1 with P, = P. (see Eq. (53)). Therefore, from a practical
point of view, the solution fulfills the critical condition

P(1)=P. (or AP(1) = AP,), (55)

and the mass flow rate is the critical one, ¢ = ¢,.
In the non-equilibrium model developed here, the above condition replaces the HEM critical
condition (13), which is equivalent to the non-dimensional expressions

(4@ (14 (P/00))
1+ (w/00)(1+ (P/6g)) 1 —log(1+(P/04))

To obtain such equilibrium expressions, the approximation hypotheses and the non-dimensional
variables defined at the beginning of this section have been taken into account. The second
equality follows from the equilibrium condition AP = 0 and Eq. (26).

The non-equilibrium condition (55) is applicable when quantity (52) is positive. Then, as AP, is
strictly greater than zero, non-equilibrium critical mass fluxes fulfill the inequality

(1+ (P/0a))*
1 —log(1+ (R/04))

As a consequence of that, in Case 2, as it happens in Case 1, the EVUT model leads to critical
mass fluxes essentially different from those resulting from HEM approach. However, both models
give similar results for intense primary nucleation events (¢*/3AP,, > 1). In general, for the same
inlet conditions non-equilibrium critical mass fluxes are greater than equilibrium ones, although
such a property cannot be directly inferred from relations (56) and (57). In fact, because of the
complexity of problems (48)—(50), demonstrating all the previous assertions rigorously is a very
difficult task and exceeds the scope of this work. Alternatively, to illustrate the behavior com-
mented above, Figs. 4-7 are included. Non-equilibrium pressure and pressure undershoot profiles
relative to various flow regimes are represented in each figure for typical values of AP,, 64 and q.
Moreover, these curves are compared with the corresponding HEM pressure profiles (AP = 0).

The non-equilibrium solutions attain their validity bound (1/4),,,, which corresponds to the
second point where the equality AP = AP, is fulfilled, at distances greater than those reached by
the turning point of the corresponding HEM profile. Therefore, as increasing mass flow rates
reduce the validity interval of solutions in both models, non-equilibrium critical solutions
((1/A4),,.. = 1) correspond to mass fluxes greater than those given by the homogeneous model.
However, when the primary nucleation is very intense (¢**AP,, > 1, Figs. 5 and 7), both non-
equilibrium and HEM solutions have approximately the same interval of validity and lead to
similar critical results.

To sum up, as well as it happened in the homogeneous model, two possible types of critical
conditions can arise in the non-equilibrium model developed here. Their applicability depends on
whether quantity (43) is positive or not: on the one hand, if (43) is positive (Case 1), critical
condition (46) applies; on the other hand, condition (55) corresponds to negative values of (43)
(Case 2).

¢ (56)

2
b; >

(57)
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Fig. 5. EVUT pressure and pressure undershoot profiles for AP, = 0.2, ¢ = 10° and 04 = 5.

The inequality (15), which determines the range of applicability of the HEM critical conditions,
is equivalent to the non-dimensional expression —2AP; — 1 = 0. Since last inequality represents a
weaker condition than the positiveness of quantity (43), the EVUT subcooled critical condition
(46) applies in a wider range than the corresponding HEM condition (14). Furthermore, in those
cases where the flashing threshold fulfills AP, > 04/(1 + 204), the quantity (43) is always positive
and only critical condition (46) is applicable.

In both Cases 1 and 2, the critical condition consists of equating the exit pressure to a critical
value (—AP, in Case 1 and P, in Case 2), which is uniquely determined by the inlet conditions. If
the ambient pressure is greater than such a critical value, the discharge problem is non-critical and
leads to subcritical mass fluxes when exit condition (30) is applied. However, when exterior
pressures are less than the critical one, apparently the fluid always discharges at critical mass flux
(¢ = ¢.). Actually, in these cases the critical pressure is attained shortly before the pipe exit,
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Fig. 7. EVUT pressure and pressure undershoot profiles for AP, = 0.05, ¢ = 10° and 04 = 5.

because pressures evolve steeply after reaching the critical value. Therefore, although for sub-
critical exterior pressures condition (30) is also fulfilled, the discharge mass flow rate is approx-
imately critical.

Subcritical mass fluxes are easily related to exit pressures when such pressures are greater than
—AP, (see (44)). On the other hand, when P, is between P, and —AP,, in Case 2, the mass flow rate
must be determined by a shooting procedure (in which the solution of the initial-value problem
(48)—(50) is forced to fulfill condition (30)).

5. Comparison with experiments

To check the validity of the analytical model developed in Sections 2 and 4, the obtained results
are compared with experimental data extracted from the Marviken full-scale tests documentation
(The Marviken Project, 1982).

From the Marviken data, three magnitudes are specially significant for this work: vessel
pressure, pipe inlet temperature and exit mass flow rate. Rather than measure directly mass flow
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rates, in Marviken the mass fluxes were inferred from other experimental data. Basically two
techniques were employed: the analysis of the vessel mass evolution and the so-called Pitot—Static
technique, consisting of coupling the pressure differences in the pipe-nozzle duct with the mea-
sured exit densities. The results corresponding to both methods will be considered here.

According to the analytical models previously developed, in critical discharges the mass flow
rate is determined by the stagnation magnitudes existing at the pipe entrance, Py and Ty. The
remaining necessary data are invariable and are extracted from both steam-water thermalhy-
draulic tables and the geometric data of the experimental device. Only the inhomogeneity factor,
 is not easily predictable and will be empirically determined.

For the analyzed Marviken tests, where vessel temperatures oscillate between 500 and 530 K
and depressurization rates at the exit nozzle are of the order of 10® Pa/s, inhomogeneity factors
ranging from 10~ to 1072 follow from the empirical formulae given by Elias and Chambré (1993)
and Alamgir and Lienhard (1981). However, last authors alert about the applicability of their
correlation for depressurization rates below 4 x 10® Pa/s. On the other hand, Elias and Chambre
observe that their formula gives rise to large errors in the prediction of pressure undershoots in
some specific tests (in particular, they mention the vessel pressure undershoots measured in
Marviken experiments). In fact, results are very sensible to y variations, for instance, when
ranges from 0.0002 to 0.0004, calculated pressure undershoots deviate by 20% below and above
the values given by the experimental data of Marviken test 24.

In the present work, the inhomogeneity factor is settled to the fixed value y = 0.00031, which is
determined adjusting the mass flow rates measured at the initial instants of Marviken test 24 to the
corresponding experimental values of vessel pressure and temperature. Such a value is of the order
of these calculated with the mentioned empirical correlations and, as it will be seen later, in spite
of the particular data used in its determination, the agreement between analytical and experi-
mental results will be very acceptable.

Four Marviken experiments have been chosen for the comparative analysis, two saturated
blowdowns (Marviken tests 10 and 23) and two subcooled ones (tests 15 and 24). Tests 23 and 24
correspond to discharges through a very short exit nozzle that presents a length to diameter ratio
of 0.3, whereas nozzles used in tests 10 and 15 are longer with length to diameter ratios of 3.1 and
3.6, respectively.

To determine the theoretical mass flow rates resulting from these experimental data, the time
histories of the non-dimensional inlet subcooling and the non-dimensional flashing threshold (see
formula (41)) are evaluated and outlined in Figs. 8 and 9. In the performed calculations, to
minimize the errors that could introduce the ideal gas law for the measured working temperatures,
the approximate expression (7) is used instead of the second relation of (4). Therefore, the cor-
responding non-dimensional parameters must be calculated having into account the modified
expressions (31).

In all cases the flashing threshold (AP,), which is very insensible to fluctuations of the input
parameters, is greater than 0.5 all through the experiment. Then, as quantity (43) is ever positive,
only the Case 1 described in Section 4 is applicable and the EVUT critical mass flow rate is always
given by expression (45).

In Figs. 10 and 11, both HEM (long dashed line) and non-equilibrium (solid line) analytical mass
fluxes are compared with the experimental results obtained in tests 24 and 15. In the first twenty
seconds of each test, corresponding to their subcooled stages (see Fig. 9), the EVUT model ap-
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Fig. 8. Marviken tests 10 and 23: Vessel subcooling, APy, and flashing threshold, AP, evolutions.
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Fig. 9. Marviken tests 15 and 24. Vessel subcooling, AP;, and flashing threshold, AP, evolutions.

proximates acceptably the experimental mass flow rates. However, during the saturated stages of
these tests the measured mass fluxes, which always take intermediate values between those resulting
from both analytical models, are not well predicted by the non-equilibrium formula (45). Moreover,
in the latest stage of test 15 the HEM model gives a better approximation to experimental results.

The inability of the non-equilibrium model to evaluate critical mass fluxes properly in saturated
blowdowns lies in the fact that in such a model the liquid entering the discharge pipe does not
contain vapor nuclei. Such an assumption, which is adequate enough for subcooled inlet condi-
tions (AP; < 0), may be not appropriate in saturated liquids (AP; = 0).

In fact, a lot of bubbles were generated at the beginning of each Marviken experiment, where
the abrupt depressurization provokes a high initial supersaturation degree. Some of the bubble
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Fig. 10. Test 24: Comparison between measured mass flow rates and analytical results (HEM, EVUT and modified
EVUT with preexistent bubble nuclei). In last model, the inlet nuclei density, ¢, is taken so as to adjust experimental and
analytical results.
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Fig. 11. Test 15: Comparison between measured mass flow rates and analytical results (HEM, EVUT and modified
EVUT with the inlet nuclei density, ¢, obtained in test 24).

nuclei produced during that supersaturated stage remained immersed in the surrounding liquid up
to they were dragged into the discharge pipe (this phenomenon has been also experimentally
observed, see, f.i., the mention done in Deligiannis and Cleaver, 1996).
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As a consequence of this, for saturated inlet conditions the fluid no longer must be considered
as pure liquid inside of the pipe. Actually, the volumetric ratio evolves along the pipe-nozzle duct
following the growth law (51) particularized for y, =y, =0, as if a primary nucleation event
arises at the pipe inlet. The parameter ¢ appearing in that expression accounts for the number of
nuclei created in the vessel and entering the discharge pipe. In fact, providing that Ny is the bubble
number density at the vessel, the following term:

_ 3/2
4TENd,l_)(Z) z 2k(/AT(20) _
== /3 dzo
306(2) \ Jo Lpg(z0) 5(z0)
must be added to the second member of the vapor generation law (10). To see that, use the steady
version of the conservation equation of bubble number density (see, f.i., Deligiannis and Cleaver,

1990) and the bubble growth law (A.1). Then, after non-dimensionalizing the resulting vapor
generation law, the formula (51) with y,, =)/ = 0 and

_ 3/2 3
4TENd ZkgTdZa Qd
q = 3 ( 5 - > <_> ) (58)
¢Psdvcd el
is obtained. Therefore, as long as the second term of the modified equation (51) is negligible,
rather than expressions (34) and (36) the more adequate system (48) and (49) must be employed to
describe the pipe-nozzle flow.

Then, for saturated inlet conditions, despite the positiveness of quantity (43), rather than
formula (45) the procedure described in Case 2 of Section 4 must be used to determine the critical
mass flow rate. To be exact, as long as the rare possibility of secondary nucleation events inside of
the pipe-nozzle duct is discarded, the critical condition appears as a secondary flashing point
arising at the nozzle exit (see condition (55)). The flashing threshold, AF,,, would be determined
when the derivative of the second term of the volumetric ratio law (51) became significant in
relation (32). However, provided that flashing threshold mainly depends on the non-dimensional
parameter «, it can be well approximated by the minimal solution of the algebraic relation (41)
particularized for AP; = 0 and a representative value of |4,,/4! |.

Analytically, the critical mass flow rate, ¢,, is determined forcing to the differential system (48)
and (49) to have a solution which fulfills the boundary conditions

w(0) = AP(0) =0, AP(1) = AP,.

Making use of that procedure, the dependence of the critical mass flow rate on the vessel nu-
cleation intensity has been evaluated and outlined in Fig. 12 for the inlet conditions measured
during the saturated stages of tests 15 and 24.

The critical mass flux decreases from the non-equilibrium value /2AP,, (see Eq. (45) in Case 1)
for ¢ = 0 to the HEM result (see Eq. (56)) for ¢ — co. However, the equilibrium critical flow is
approached in test 15 for vessel nucleation intensities lower than those needed in test 24. Physi-
cally, these facts can be explained as follows: first, the greater is the quantity of bubble nuclei
entering the discharge pipe (¢) the faster is the evolution to equilibrium conditions inside of the
pipe-nozzle duct; second, this evolution mainly arises at the exit zone of the nozzle, where the
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Fig. 12. Modified EVUT model: Non-dimensional mass flow rate, ¢, versus nuclei density at the nozzle inlet, ¢.

pressure undershoot is large enough to make the g-terms significant in Egs. (48) and (49) (test 15
nozzle possesses a longer exit zone than the one made use of in test 24).

The behavior commented above agrees with the phenomena observed in the saturated stages of
tests 24 and 15 (see Figs. 10 and 11). On the one hand, measured mass flow rates behave between
the non-equilibrium and equilibrium analytical results. On the other hand, test 15 experimental
mass fluxes are closer to HEM values than those measured in test 24.

Determining analytically the value of ¢ applicable to each case would require a precise study of
the evolution of some vessel magnitudes. Thus, in order not to prolong excessively this work, in
the saturated blowdowns analyzed here the vessel nucleation intensity has been estimated ad-
justing calculated and measured mass flow rates. The results corresponding to the saturated stages
of tests 24 and 23 are outlined in Figs. 10 and 13 (dot-dashed lines), where the values of parameter
¢ used in the calculations are also represented. The value of ¢ = 200, obtained during the most
part of the saturated blowdowns in both tests, corresponds to inlet bubble number densities (see
Eq. (58)) between 0.4 x 10! and 0.6 x 10'! 1/m>. These results are very near to the fixed nuclei
density of Ny = 10'!' 1/m? taken in the two-phase critical flow model of Dobran (1987) to simulate
critical discharges of pressurized water. Similarly, in their model Dagan et al. (1993) make use of a
fixed inlet nuclei density which depends on the length to diameter ratio of the discharge channel.
These authors proposed a value of Ny = 0.3 x 10! 1/m? for length to diameter ratios equal to
unity (a suitable value for the short Marviken discharge nozzles when the effect of the large di-
ameter discharge pipe is neglected).

During the saturated stages of tests 10 and 15 the parameter ¢ is not easily adjustable, because
the measured mass fluxes oscillates within the flat zone close to HEM values of the curves outlined
in Fig. 12. However, tests 10 and 23, as well as tests 15 and 24, present very similar evolutions of
vessel magnitudes, thus the values of parameter ¢ used to approach the experimental data of tests
23 and 24 can be employed to reproduce tests 10 and 15, respectively. In Figs. 14 and 11, the
modified EVUT results (dot-dashed lines) are represented, respectively, for test 10 and the sat-
urated stage of test 15. Analytical and experimental data present now an excellent agreement at all
times.
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Fig. 13. Test 23: Comparison between measured mass flow rates and analytical results (HEM and modified EVUT). In
last model, the inlet nuclei density, ¢, is taken so as to adjust experimental and analytical results.
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Fig. 14. Test 10: Comparison between measured mass flow rates and analytical results (HEM and modified EVUT with
the inlet nuclei density, ¢, obtained in test 23).

To sum up, for the analyzed tests the expression (45) (Case 1) gives a good approximation of
critical mass fluxes in subcooled blowdowns. Moreover, when the EVUT model is modified to
account for the bubble nuclei present at the pipe inlet, the critical condition (55) (Case 2) also
determines very well critical discharges in saturated blowdowns. However, in such cases the pa-
rameter ¢, which account for vessel nucleation intensities, must be previously determined. Finally,
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the non-equilibrium model justifies reasonably the validity of HEM model to predict saturated
blowdowns through long-sized nozzles as well as its inability to approximate experimental results
for subcooled blowdowns or discharges through very short nozzles.

6. Conclusions

An EVUT model has been analyzed to account for thermal disequilibrium in flashing critical
flows. The obtained results have been related with those coming from the HEM, whose main
features are summed up in Section 3.

In both models, two types of critical flow regimes, basically characterized by the position of the
onset of flashing (the point where the vapor phase appears), can arise depending on the inlet
subcooling degree. On the one hand, for small or null inlet subcoolings the flashing point is
usually attained before the nozzle end. On the other hand, when the subcooling degree at the
nozzle intake is high enough, the vapor phase does not appear up to the exit section.

In the HEM approach the onset of flashing coincides with the limit of the saturation zone
(AP = 0) and the critical boundary conditions corresponding to small and high inlet subcoolings
are, respectively, (13) and (14).

In the EVUT model, as well as it happens in the equilibrium model, the vapor phase also
appears when the saturation line (w =0,AP = 0) is reached. However, its influence remains
negligible up to the pressure undershoot attains a certain flashing threshold (AP,, > 0). Then, from
a practical point of view the onset of flashing is characterized by conditions w ~ 0 and AP = AP,,.
The set of applicable critical conditions in this case are (46) and (55), which correspond respec-
tively to positive and negative values of quantity (43). On the one hand, condition (46) means that
the unique nucleation layer arises just at the exit section. On the other hand, condition (55) implies
that the flashing threshold is attained at the nozzle end for the second time.

The adequacy of the EVUT model to predict critical mass fluxes in subcooled blowdowns is
verified after comparing EVUT results to some experimental data obtained in the Marviken test
series. However, the non-equilibrium model developed in Sections 2 and 4 considers that only
pure liquid without bubbles flows into the nozzle, which results to be an unrealistic hypothesis in
saturated blowdowns (AP; = 0). After modifying the EVUT model to take into account the
presence of bubble nuclei in the liquid expelled from the vessel, the analytical results are also
largely improved for saturated blowdowns. However, the bubble number density entering the
discharge nozzle must be adjusted. For the saturated blowdowns analyzed here, the vessel nuclei
density needed to fit analytical and experimental results are of the same order than those used in
other studies.
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Appendix A

Using Eulerian coordinates the bubble growth law (9) takes the form

b 4—“#5 :4m7k”A_T
376 L’

Dt

where the substantial derivative D/Dr = 0/0t + v 0/0z is introduced and the value Nu = 2 is ta-
ken. For steady flows such an equation reduces to

4 4—n73;3 _ 4 "AT
dz \ 3 G L

v

which integrated for a bubble sprouting at z = z, (7(z9) = 0) gives

. . 1/2
}7(2; ZO) = pG(i)1/3 </z Zk[Alz(ZO) )1/3 dZo) . (Al)

0 LﬁG(EO) / 5(20
The bubble production law (8) remains null up to section z,, where the pressure undershoot
becomes non-negative. Therefore, under steady conditions the void fraction flux at any section
after z, is determined by the bubbles generated from z, up to z:

l6ma3y
3k T (z0)AP(z0)

wid — / Az NBexp <_ )(1 — az0))A(z0) dzo.

From this relation and Eq. (A.1), the vapor generation law (10) for steady flows readily follows.

Appendix B

The following results hold for blowdowns through frictionless convergent nozzles (4" < 0):
e First, as long as AP remains positive after point y, (the limit of the subcooled region, P(y,) = 0),
w is an increasing function of y whereas P and P + AP are decreasing. Moreover, the quantity

P Pw
1+ 8.~ 1%, (B.1)
is non-negative throughout the nozzle.

e Second, let y; be a point where the coefficient of the volumetric ratio derivative in Eq. (32) be-
comes positive. Then, providing that AP is positive in the interval ]y,, ], the pressure under-
shoot not only remains positive after y > y; but it is also increasing.

To prove the first assertion, observe that for y > y, the positiveness of AP imply that the
product w(1l + P/6,) is increasing (derive in Eq. (28)) and, as a result, P + AP is decreasing (use
relation (26)). Then, as the y-derivative of w(1 4+ P/6y) is positive and the second member of Eq.

(27) is negative, the following inequalities are obtained:
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2 2
(1 +£—M>d—w>0, <1+£—M>d—P<O.
Gd A20d dy 9(1 A20d dy
These strict inequalities prove: firstly, that quantity (B.1), which equals unity at y,, never is null
and remains positive for y > y,; secondly, that w and P are, respectively, increasing and decreasing
functions of y.
The second result is now an immediate consequence of the first one, which implies that the

coeflicient of the volumetric ratio derivative in Eq. (32) goes on being positive for y > y;.
Taking into account the preceding results, the inequality

2C03(log (1 + (AP, /(04 — AP,))))?e /A
5720212 (1 — (AP, /04)) (1 + w)*?

comes from Eq. (28) for y > y,. Thus, after using the second relation of (38), the following bound
is obtained:

5/2

w—w(y) =Aw = y =)

2 SAW(L+w) AL\ (87/47) + (APW/00) — 1] 5
< 207141 e

Expression (B.2) implies that, after any point y; fulfilling the hypotheses of the second result,
magnitude variations of order unity are performed in regions of approximate size *> ( is the
width of the nucleation layer at y,,). In other words, after such points the solutions of the system
(28) and (32) behave explosively, reaching large values of volumetric ratio and pressure under-
shoot in short distances.

The points y,, and y; defined in Section 4 fulfill the conditions of the second result for Cases 1
and 2.1, respectively. In particular, in Case 2.1 the second member of Eq. (49) is positive for
AP = 0. Thus, in the phase plane of the system (48) and (49) the trajectories cannot cross from
above the line AP =0 and the pressure undershoot, AP, remains positive between points y,,
and y;.

=) (B.2)
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